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An approximate method is extended for analyzing the free vibration problem of
orthotropic square plate with a square hole. In this paper, a square plate with a square hole
is transformed into an equivalent square plate with non-uniform thickness by considering
the hole as an extremely thin part of the equivalent plate. Therefore, the dynamic
characteristics of a plate with a hole can be obtained by analyzing the equivalent plate. The
Green function, which is the discrete solution for the deflection of the equivalent plate, is
used to obtain the characteristic equation of the free vibration. The effects of the side to
thickness ratio, hole side to plate side ratio and the variation of the thickness on the
frequencies are considered. Some numerical analyses are carried out for the simply
supported orthotropic square plate with a square hole. The efficiency and accuracy of the
numerical solutions by the present method are investigated.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Plates with holes are extensively used in aeronautical, mechanical and civil structures.
Their dynamic characteristics have been studied for many years. Early studies were
compiled by Leissa [1]. Paramasivam [2] extended a grid framework model to determine
the effects of the holes on the fundamental frequencies. Numerical solutions were
presented for isotropic square plates with square holes. Hegarty and Ariman [3] used a
least-squares point-matching method to investigate the free vibration of the isotropic
rectangular plates with a central circular hole. Clamped and simply supported plates were
considered. The Rayleigh method was used to analyze the dynamic characteristics of plates
with holes by Ali and Atwal [4]. Frequencies were shown for the isotropic simply
supported square plates with square and rectangular holes. Aksu and Ali [5] proposed a
finite difference formulation for the prediction of dynamic behaviour of isotropic
rectangular plates with holes. Experimental and theoretical frequencies were given for the
plates with single hole or double holes. Compared with the study of isotropic plates with
holes, the analyses of orthotropic plates with holes are very limited. Reddy [6] studied the
large-amplitude free vibration of layered composite plates with rectangular cutouts by
finite element method. Frequencies corresponding to linear and non-linear situations were
presented for thin and thick orthotropic and composite plates. Avalos et al. [7] obtained
the frequency parameters for anisotropic rectangular plates with free-edge holes by using
the Rayleigh–Ritz method. The effects of aspect ratio, hole side to plate side ratio and the
position of the hole on the frequencies were investigated.

This paper extends the early work [8] to analyze the free vibration of orthotropic square
plates with a hole. By considering the hole as an extremely thin part of a plate, the free
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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vibration problem of a plate with a hole can be transformed into the free vibration
problem of its equivalent square plates with non-uniform thickness. The Green function is
used to obtain the characteristic equation of the free vibration. The effects of side to
thickness ratio, hole side to plate side ratio and the variation of the thickness in one
direction or two directions on the frequencies are presented. The lowest 10 frequency
parameters and their mode shapes are given for simply supported orthotropic square
plates with a square hole. By comparing the present results with those previously reported,
the convergence and accuracy of the present method are investigated.

2. DISCRETE GREEN FUNCTION

An xyz co-ordinate system is used in the present study with its x2y plane contained in
the middle plane of an orthotropic square plate and the z-axis perpendicular to the middle
plane of the plate. The thickness and the length of the orthotropic square plate are h and a

respectively. The principal material axes of the plate in the direction of longitudinal,
transverse and normal directions are designated as 1, 2 and 3. The differential equations of
the plate with a concentrated load %PP at point ðxq; yrÞ are as follows:
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where Qx and Qy are the transverse shear forces, Mx and My are the bending moments,
Mxy is the twisting moment, k ¼ 5=6 is the shear correction factor, dðx � xqÞ and dðy � yrÞ
are Dirac’s delta functions, Aij is the extensional stiffness (i; j ¼ 4; 5) and Dij is the bending
stiffness (i; j ¼ 1; 2; 6).

Aij; Dij can be obtained by the following expressions:
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where E1 is the axial modulus in the 1-direction, E2 is the axial modulus in the 2-direction,
n12 is the Poisson ratio associated with loading in the 1-direction and strain in the 2-
direction, n21 is the Poisson ratio associated with loading in the 2-direction and strain in
the 1-direction and G23; G31 and G12 are the shear moduli in 2–3, 3–1 and 1–2 planes.

By using the non-dimensional expressions
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the equation (1) can be rewritten as
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where t ¼ 128; P ¼ %PPa=ðD0ð1� n12n21ÞÞ; D0 ¼ Eh3
0=12ð1� n12n21Þ is the standard bend-

ing rigidity, h0 is the standard thickness of the plate, dij is Kronecker’s delta, and F1ts; F2ts

and F3ts are given in Appendix A.
By dividing a rectangular plate vertically into m equal-length parts and horizontally into

n equal-length parts as shown in Figure 1, the plate can be considered as a group of
discrete points which are the intersections of the (m þ 1) vertical and (n þ 1) horizontal
dividing lines. In this paper, the rectangular area, 04Z4Zi; 04z4zj; corresponding to the
arbitrary intersection (i; j) as shown in Figure 1 is denoted as the area [i; j], the intersection
(i; j) denoted by * is called the main point of the area [i; j], the intersections denoted by 8are called the inner dependent points of the area, and the intersections denoted by * are
called the boundary dependent points of the area.

By integrating equation (2) over the area [i; j], the following integral equation is
obtained:
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where uðZ� ZqÞ and uðz� zrÞ are the unit step functions.
Figure 1. Discrete points on a rectangular plate.
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Next, by applying the numerical integration method, the simultaneous equation for the
unknown quantities Xsij ¼ XsðZi; zjÞ at the main point (i; j) of the area [i; j] is obtained as
follows:
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where bik ¼ aik=m; bjl ¼ ajl=n; aik ¼ 1� ðd0k þ dikÞ=2; ajl ¼ 1� ðd0l þ djlÞ=2; t ¼ 128;
i ¼ 12m; j ¼ 12n; uiq ¼ uðZi � ZqÞ and ujrðzj � zrÞ:

The solution Xpij of the simultaneous equation (4) is obtained as follows:
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where p ¼ 128; Apt; Bpt and Cptkl are given in Appendix B.
In equation (5), the quantity Xpij at the main point (i; j) of the area [i; j] is related to the

quantities Xtk0; Xt0l at the boundary dependent points of the area and the quantities Xtkj ,
Xtil and Xtkl at the inner dependent points of the area. With the spreading of the area [i; j]
according to the regular order as [1, 1], [1, 2],. . .,[1, n], [2, 1], [2, 2],. . .,[2 n],. . .,[m; 1], [m;
2],. . .,[m; n], a main point of the smaller area becomes one of the inner dependent points of
the following larger areas. Whenever the quantity Xpij at the main point (i; j) is obtained by
using equation (5) in the above-mentioned order, the quantities Xtkj ; Xtil and Xtkl at the
inner dependent points of the following larger areas can be eliminated by substituting the
obtained results into the corresponding terms on the right side of equation (5).

By repeating this process, the equation Xpij at the main point is only related to the
quantities Xrk0ðr ¼ 1; 3; 4; 6; 7; 8Þ and Xs0lðs ¼ 2; 3; 5; 6; 7; 8Þ which are six independent
quantities at each boundary dependent point along the horizontal axis and the vertical axis
in Figure 1 respectively. The result is
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where apijfd ; bpijgd and %qqpij are given in Appendix C.
Equation (6) gives the discrete solution of the fundamental differential equation (2) of

the bending problem of a plate under a concentrated load, and the discrete Green function
is chosen as X8ij=½ %PPa=D0ð1� n12n21Þ�:

3. INTEGRAL CONSTANT AND BOUNDARY CONDITION
OF A RECTANGULAR PLATE

The integral constants Xrfo and Xsog involved in discrete solution (6) are all quantities
at the discrete points along the edges z ¼ 0 ðy ¼ 0Þ and Z ¼ 0 ðx ¼ 0Þ of the rectan-
gular plate. There are six integral constants at each discrete point. Half of them are self-
evident according to the boundary conditions along the edges z ¼ 0 and Z ¼ 0 and half
of them are needed to determine by the boundary conditions along the edges z ¼ 1 and
Z ¼ 1:



The integral constants and the boundary conditions for a simply supported plate are
shown in Figure 2, and those at the corners of the plate are shown in the boxes.

Figure 2. Simply supported plate.
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4. EQUIVALENT SQUARE PLATE OF A SQUARE PLATE WITH A HOLE

A square plate with a hole can be transformed into an equivalent square plate with non-
uniform thickness (shown in Figure 3) by considering the hole as an extremely thin part of
the plate theoretically. The thickness of the actual part of original square plate is expressed
as h; and the thickness of the extremely thin part of the equivalent square plate is expressed
as ht: The thickness of the plate along the border line between the actual part and the
extremely thin part is chosen as ðh þ htÞ=2: In this paper, numerical results are carried out
for a simply supported square plate with a central square hole. The simply supported and
free edges are denoted by the symbols S and F, respectively, and shown by solid line and
dotted line.

5. CHARACTERISTIC EQUATION OF FREE VIBRATION OF SQUARE PLATE WITH
NON-UNIFORM THICKNESS

By applying the Green function wðx0; y0; x; yÞ= %PP which is the displacement at a point
ðx0; y0Þ of a plate with a concentrated load %PP at the point (x; y), the displacement
amplitude #wwðx0; y0Þ at a point (x0; y0) of the square plate during the free vibration is given
as follows:
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Z a

0

Z a

0

rho2 #wwðx; yÞ½wðx0; y0; x; yÞ= %PP� dx dy; ð7Þ

where r is the mass density of the plate material.
The following non-dimensional expressions are used:
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where r0 is the standard mass density.



Figure 3. Square plate with a square hole and its equivalent square plate.
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By using the numerical integration method, equation (7) is discretely expressed as
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From equation (8), homogeneous linear equations in ðm þ 1Þ � ðn þ 1Þ unknowns
W00;W01; . . . ;W0n;W10;W11; . . . ;W1n; . . . ;Wm0;Wm1; . . . ;Wmn are obtained as follows:Xm

i¼0

Xn

j¼0

ðbmibnjHijGklij � kdikdjlÞWij ¼ 0 ðk ¼ 0; 1; . . . ;m; l ¼ 0; 1; . . . ; nÞ: ð9Þ

The characteristic equation of the free vibration of a square plate with variable thickness
is obtained from equation (9) as follows:
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6. NUMERICAL RESULTS

6.1. CONVERGENCE OF THE SOLUTION

In order to examine the convergence, numerical calculation is carried out by varying
the number of divisions m and n: The lowest 10 natural frequency parameters
of an orthotropic square plate with a square hole are shown in Figure 4. The properties
of the orthotropic material are given as E1=E2 ¼ 40;G12=E2 ¼ 0	5; G13 ¼ G23 ¼ G12; n12 ¼
0	25: It can be noticed that convergent results of frequency parameter can be obtained
by using Richardson’s extrapolation formula for two cases of divisional numbers



Figure 4. The natural frequency parameter l versus the divisional number m ð¼ nÞ for the SSSS orthotropic
square plate with a square hole and uniform thickness.

Figure 5. The natural frequency parameter l versus the thickness ratio h=ht for the SSSS orthotropic square
plate with a square hole and uniform thickness.
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m ð¼ nÞ of 12 and 16. Figure 5 is used to determine the suitable thickness ratio h=ht

of the original and extremely thin parts. It is sufficient to set the thickness ratio
h=ht ¼ 12:

By the same method, the number of divisions m ð¼ nÞ and the thickness ratio h=ht can be
determined for the other plates. The convergent values of frequency parameter are
obtained by using Richardson’s extrapolation formula for two cases of divisional numbers
m ð¼ nÞ:



Table 1

Natural frequency parameter l for SSSS isotropic square plate with a square hole and

uniform thickness (c=a ¼ 0	5; a=h ¼ 100; h=ht ¼ 12)

Mode sequence number

References 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Present
12� 12 4	731 6	595 6	595 8	818 9	531 11	552 11	552 12	757 15	112 15	174
16� 16 4	779 6	525 6	527 8	676 9	244 11	225 11	237 12	553 14	422 14	763
Ex.y 4	839 6	435 6	440 8	492 8	875 10	805 10	831 12	291 13	534 14	234
Reference [4] 4	936 6	502 6	502 8	525 8	813 } } } } }
Reference [6] 4	962 } } } 8	871 } } } } }

yThe result obtained by Richardson’s extrapolation formula.
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6.2. ACCURACY OF THE SOLUTION

The frequencies of the free vibration of square plates with square holes are given to
show the accuracy of the numerical solution obtained by the present method. The lowest
10 natural frequencies and mode shapes of these plates are presented for the cases of
uniform thickness and variable thickness.

6.2.1. Plate with uniform thickness

Numerical values for the lowest 10 natural frequency parameter l of the SSSS isotropic
thin square plate with a square hole of side ratio c=a ¼ 0	5 and n ¼ 0	3 are given in Table 1
with the other values obtained by Ali and Atwal [4] and Reddy [6]. From Table 1, it can be
seen that these values are in close agreement. The nodal patterns of the 10 modes of the
plate are shown in Figure 6. Those of the fourth and fifth modes can also found in mode
shapes of a plate without a hole [13, 14].

The effects of the hole size on the first five frequencies are shown in Figure 7 for the
SSSS isotropic thin square plate. It might be noted that the variations of the fundamental
and higher frequencies are different. As the ratio c=a increases, the fundamental frequency
first decreases a little, then increases. For c=a ¼ 0	5; the fundamental frequency of the
plate is higher than the corresponding frequency for the plate without a hole. But as the
ratio c=a increases, the second, third and fourth frequencies first increase a little, then
decreases. For c=a ¼ 0	5; these frequencies are lower than the corresponding frequencies
for the plate without a hole. The fifth frequency monotonically decreases with the increase
of c=a: To validate the accuracy of the present results, the finite element and the Rayleigh–
Ritz results of Kaushal and Bhat [11] and the finite element results of Ali and Atwal [4] are
also shown in Figure 7. These results agree closely for a small hole. As the hole size
increases, the present results are in close agreement with the finite element results but quite
lower than the Rayleigh–Ritz results for the higher frequencies.

Tables 2 and 3 present the numerical results for the lowest 10 natural frequency
parameter l of the SSSS orthotropic thin and moderately thick square plates with a square
hole of side ratio c=a ¼ 0	5: By comparing the results with the results of Reddy [6], the
accuracy of the present results is investigated. These tables show that the side to thickness
ratio a=h affects the frequency considerably. The nodal patterns of the 10modes of the
plates are shown in Figures 8 and 9. It can be noted that when a=h changes form 100 to 10,
the first, second, fourth and fifth mode shapes do not change. The third, eighth and tenth



Figure 6. Nodal patterns for SSSS isotropic square plate with a square hole and uniform thickness (c=a ¼ 0	5;
a=h ¼ 100; h=ht ¼ 12).

Figure 7. The first five frequencies versus the ratio c=a for SSSS isotropic square plate with a square hole and
uniform thickness (a=h ¼ 100).

Table 2

Natural frequency parameter l for SSSS orthotropic square plate with a square hole and

uniform thickness (c=a ¼ 0	5; a=h ¼ 100; h=ht ¼ 12)

Mode sequence number

References 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Present
12� 12 7	172 8	665 9	712 11	117 13	993 14	912 16	517 17	587 17	758 20	656
16� 16 7	140 8	610 9	436 10	859 13	987 14	459 16	194 16	828 17	612 19	348
Ex. 7	098 8	539 9	070 10	528 13	979 13	877 15	778 15	853 17	425 17	666
Reference [6] 7	160 } } 10	598 } } } } } }
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mode shapes change a lot. The sixth, seventh and ninth modes shapes in Figure 8 change
into the seventh, sixth and eighth mode shapes in Figure 9 respectively. From Tables 1 and 2,
it can be noted that the trend of the variation of the first frequency with the divisional
number is different in Tables 1 and 2.

To better illustrate the effect of the hole size on the frequency of SSSS orthotropic thin
and moderately thick plate, the variation of fundamental frequency with c=a is shown in



Table 3

Natural frequency parameter l for SSSS orthotropic square plate with a square hole and

uniform thickness (c=a ¼ 0	5; a=h ¼ 10; h=ht ¼ 12)

Mode sequence number

References 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Present
12� 12 6	494 7	726 8	196 9	763 10	664 12	293 13	079 14	275 14	778 14	851
16� 16 6	485 7	685 8	041 9	534 10	721 12	115 12	641 13	781 14	534 14	627
Ex. 6	473 7	634 7	841 9	240 11	273 11	887 12	078 13	667 14	222 14	339
Reference [6] 6	537 } } 9	139 } } } } } }

Figure 8. Nodal patterns for SSSS isotropic square plate with a square hole and uniform thickness (c=a ¼ 0	5;
a=h ¼ 100; h=ht ¼ 12).

Figure 9. Nodal patterns for SSSS isotropic square plate with a square hole and uniform thickness (c=a ¼ 0	5;
a=h ¼ 10; h=ht ¼ 12).
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Figure 10. It can be seen that the frequencies decrease with the increase of c=a for both
thin and moderately thick plates. The effect of the transverse shear deformation on
frequencies decrease with the increase of c=a: The present results agree closely with the
results obtained by Lam et al. [12] and Reddy [6] shown in Figure 10. Comparing Figure 7
with Figure 10, it can be noted that the first natural frequency decreases a little first and
then increases with c=a in Figure 7, while it decreases with c=a in Figure 10. To explain the
phenomenon, two effects introduced by a hole are considered. The first one is a reduction
in the strain energy of the plate which will decrease the frequency of the plate. The second
one is a reduction in the mass which will increase the frequency. For the isotropic plate
with a small hole, the first effect might be the dominant effect, and the frequency would
decrease. But for a larger hole, the second effect might become the primary effect, and the
frequency would begin to increase. Further explanation can be found in reference [4]. In
this paper, no apparent decrease of the first frequency can be shown for isotropic plate.
The first frequency decreases just a little first and then increases in Figure 7. For the
orthotropic plate with a larger hole, the first effect might be still the dominant effect due to
its high ratio of E1=E2; and the frequency would continue to decrease with c=a40	5:



Figure 10. The fundamental frequencies versus the ratio c=a for SSSS orthotropic square plate with a square
hole and uniform thickness.
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Figure 11 shows the variation of the fundamental frequency parameter with the side to
thickness ratio a=h for the plates with c=a ¼ 0; 0	2 and 0	5. Isotropic and orthotropic cases
are considered. The results of Reddy [6] are included in the figure.

It can be noticed that the effect of transverse shear deformation is much more
pronounced in orthotropic plate than in isotropic plate. Also, the effect increases with the
decrease of the ratio a=h: So as the ratio a=h increases, the fundamental frequencies show
non-linear increase for values of a=h smaller than 30 but show linear increase for larger
values of a=h and remain constant for large values of a=h: The fundamental frequency
parameter for the plate with side ratio c=a ¼ 0	2 is lower than that of plate without a hole
for both isotropic and orthotropic cases. Compared with the frequencies of the plates with
c=a ¼ 0 and 0	2, the frequency of the plate with c=a ¼ 0	5 is higher for the isotropic case
but it is lower for the orthotropic case.

6.2.2. Plate with variable thickness in one direction

In order to investigate the accuracy of the present method for the plate with variable
thickness, numerical values for the lowest 10 natural frequency parameter l of the SSSS
isotropic thin square plate with variable thickness in one direction are given in Table 4
with the results of Appl and Byers [10]. In this paper, variable thickness in one direction
varies linearly along the y direction according to the equation hðx; yÞ ¼ h0ð1þ ay=aÞ: The
cases of a ¼ 0	1 and 0	8 are considered. The nodal patterns of the 10 modes of the plates
are shown in Figure 12. With the increase of a; the horizontal nodal lines move down.

As application of the present method, the numerical results for the lowest 10 natural
frequency parameter l of the SSSS orthotropic thin and moderately thick square plates
with a square hole of side ratio c=a ¼ 0	5 and variable thickness in one direction are
presented in Tables 5 and 6. From these tables, it can be seen that the frequency
parameters will increase with the increase of a: The nodal patterns of the 10 modes of the
plates are shown in Figures 13 and 14. With the increase of a; the horizontal nodal lines
move down in both figures. There is a change of mode order in the 10th mode in Figure 13.



Figure 11. The fundamental frequency versus the thickness ratio a=h for SSSS square plate with a square hole
and uniform thickness (h=ht ¼ 12).

Table 4

Natural frequency parameter l for SSSS isotropic square plate with variable thickness in one

direction (a=h0 ¼ 100; h0=ht ¼ 12)

Mode sequence number

a References 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Present
0	1 12� 12 4	687 7	512 7	513 9	540 10	928 10	932 12	406 12	407 14	871 14	725

16� 16 4	675 7	447 7	447 9	437 10	692 10	697 12	163 12	165 14	270 14	259
Ex. 4	660 7	363 7	363 9	312 10	390 10	393 11	851 11	853 13	497 13	659
Reference [10] 4	661 } } } } } } } } }

Present
0	8 12� 12 5	387 8	578 8	614 10	949 12	347 12	520 14	222 14	277 16	591 16	910

16� 16 5	372 8	503 8	538 10	834 12	085 12	246 13	937 13	989 15	927 16	326
Ex. 5	354 8	406 8	439 10	685 11	747 11	893 13	570 11	617 15	074 15	575
Reference [10] 5	335 } } } } } } } } }
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In Figure 14, other changes can be seen apparently in seventh, ninth and tenth mode
shapes.

6.2.3. Plate with variable thickness in two directions

The numerical results for the lowest 10 natural frequency parameter l of the SSSS
orthotropic thin and moderately thick square with a square hole of side ratio c=a ¼ 0	5
and variable thickness in two directions are presented in Tables 7 and 8. The thickness of
the plate varies in the x, y directions according to the sinusoidal function given by
hðx; yÞ ¼ h0ð1� a sin px=aÞð1� a sin py=aÞ: Two cases of a ¼ 0	3 and 0	5 are considered.
It shows that the frequency parameters will decrease with the increase of a: The nodal



Figure 12. Nodal patterns for SSSS isotropic square plate with a variable thickness in one direction
(a=h ¼ 100; h0=ht ¼ 12).

Table 5

Natural frequency parameter l for SSSS orthotropic square plate with a square hole and

variable thickness in one direction (c=a ¼ 0	5; a=h0 ¼ 100; h0=ht ¼ 12)

Mode sequence number

a References 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Present
0	1 12� 12 7	342 8	878 9	929 11	384 13	679 15	267 17	020 18	222 18	013 21	320

16� 16 7	309 8	821 9	654 11	121 13	839 14	802 16	583 17	275 17	235 19	808
Ex. 7	267 8	749 9	299 10	782 14	045 14	204 16	020 16	056 16	234 17	865

Present
0	8 12� 12 8	314 10	265 11	337 13	034 16	917 17	197 18	671 20	705 21	235 24	374

16� 16 8	272 10	197 11	002 12	752 16	389 16	627 18	127 19	718 20	791 22	808
Ex. 8	217 10	110 10	571 12	388 15	710 15	894 17	427 18	448 20	221 20	794

Table 6

Natural frequency parameter l for SSSS orthotropic square plate with a square hole and

variable thickness in one direction (c=a ¼ 0	5; a=h0 ¼ 10; h0=ht ¼ 14)

Mode sequence number

a References 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Present
0	1 12� 12 6	604 7	848 8	268 9	898 11	569 12	367 13	221 14	295 14	823 14	996

16� 16 6	595 7	807 8	115 9	666 11	071 12	234 12	783 13	940 14	583 14	757
Ex. 6	584 7	755 7	917 9	368 10	431 12	077 12	221 13	484 14	275 14	449

Present
0	8 12� 12 7	214 8	547 8	880 10	700 11	574 13	069 13	902 17	337 15	070 15	700

16� 16 7	210 8	507 8	742 10	460 11	228 12	932 13	506 14	880 14	833 15	354
Ex. 7	206 8	456 8	565 10	151 10	784 12	756 12	998 14	528 14	528 14	947
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Figure 13. Nodal patterns for SSSS orthotropic square plate with a square hole and variable thickness in one
direction (c=a ¼ 0	5; a=h ¼ 100; h0=ht ¼ 12).

Figure 14. Nodal patterns for SSSS orthotropic square plate with a square hole and variable thickness in one
direction (c=a ¼ 0	5; a=h ¼ 10; h0=ht ¼ 14).
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patterns of the 10 modes of the plates are shown in Figures 15 and 16. From Figures 8,
13 and 15, it can be found that the first nine mode shapes are similar. The 10th
mode shape in Figure 8 is similar to that for a ¼ 0	8 in Figure 13. The 10th mode shape
for a ¼ 0	1 in Figure 13 is similar to those of a ¼ 0	3 and 0	5 in Figure 15. With
the increase of a; only the nodal lines of mode shape in Figure 13 move down, but
those in Figure 15 do not. This is because the thickness at two symmetric points
with regard to horizontal axis is different in Figure 13 but the same in Figure 15. From
Figures 9, 14 and 16, it can be noticed that the first eight mode shapes are similar. The
ninth and tenth mode shapes in Figure 9 are similar to those in Figure 14 but different
from those in Figure 15.



Table 7

Natural frequency parameter l for SSSS orthotropic square plate with a square hole and

variable thickness in two directions (c=a ¼ 0	3; a=h0 ¼ 100; h0=ht ¼ 14)

Mode sequence number

a References 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Present
0	3 12� 12 6	315 7	727 8	813 10	027 12	848 13	305 15	682 14	773 16	050 18	619

16� 16 6	304 7	686 8	582 9	831 12	704 12	935 15	001 14	494 15	594 17	341
Ex. 6	289 7	634 8	286 9	578 12	520 12	461 14	125 14	135 15	007 15	698

Present
0	5 12� 12 5	680 7	059 8	177 9	277 11	786 12	184 13	365 14	337 14	746 17	026

16� 16 5	685 7	031 7	994 9	124 11	641 11	869 13	126 13	715 14	174 15	892
Ex. 5	691 6	994 7	759 8	927 11	454 11	463 12	819 12	915 13	439 14	433

Table 8

Natural frequency parameter l for SSSS orthotropic square plate with a square hole and

variable thickness in two directions (c=a ¼ 0	3; a=h0 ¼ 10; h0=ht ¼ 16)

Mode sequence number

a References 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Present
0	3 12� 12 6	000 7	223 7	824 9	223 10	321 11	796 12	203 13	560 13	942 14	154

16� 16 5	996 7	190 7	684 9	033 10	189 11	630 11	937 13	117 13	588 13	833
Ex. 5	995 7	147 7	504 8	788 10	021 11	416 11	467 12	548 13	133 13	420

Present
0	5 12� 12 5	519 6	762 7	398 8	749 9	317 11	284 11	509 13	486 12	852 13	542

16� 16 5	530 6	737 7	278 8	594 9	509 11	127 11	220 12	566 12	490 13	061
Ex. 5	543 6	705 7	124 8	395 9	755 10	925 10	849 11	381 12	024 12	442

Figure 15. Nodal patterns for SSSS orthotropic square plate with a square hole and variable thickness in two
direction (c=a ¼ 0	5; a=h ¼ 100; h0=ht ¼ 14).
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Figure 16. Nodal patterns for SSSS orthotropic square plate with a square hole and variable thickness in two
direction (c=a ¼ 0	5; a=h ¼ 10; h0=ht ¼ 16).
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7. CONCLUSIONS

An approximate method is extended for analyzing the free vibration problem of
orthotropic square plate with a square hole. An equivalent square plate is used to
obtain the dynamic characteristics of a plate with a hole. The characteristic equation
of the free vibration is got by using the Green function. The frequency parameters
and their mode shapes are shown for simply supported thin and moderately thick
plates with a hole for isotropic and orthotropic cases. It can be known that the
transverse shear deformation effect is much more pronounced in orthotropic plate
than in isotropic plate. The effects of the variation of the thickness in one
and two direction on the frequencies are considered. The results by the present
method have been compared with those previously reported. It shows that the
present results have a good convergence and satisfactory accuracy. Although numerical
results are given for only simply supported plates, the present method is a general
method and can be used to solve the vibration problem of plates with different
boundary conditions.
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APPENDIX A

F111 ¼ F123 ¼ F134 ¼ 1; F146 ¼ %DD12; F147 ¼ %DD16; F156 ¼ %DD22;

F157 ¼ F166 ¼ %DD26; F167 ¼ %DD66; F178 ¼ k %AA44; F188 ¼ k %AA45;

F212 ¼ F225 ¼ F233 ¼ m; F246 ¼ F267 ¼ m %DD16; F247 ¼ m %DD11;

F256 ¼ m %DD26; F257 ¼ m %DD12; F266 ¼ m %DD66; F278 ¼ F379 ¼ F386 ¼ mk %AA45;

F288 ¼ F387 ¼ mk %AA55; F322 ¼ F331 ¼ �m; F345 ¼ F354 ¼ F363 ¼ �m %DD;

F371 ¼ F382 ¼ �mDT ; other Fkts ¼ 0:

APPENDIX B

Ap1 ¼ gp1; Ap2 ¼ 0; Ap3 ¼ gp2; Ap4 ¼ gp3;

Ap5 ¼ 0; Ap6 ¼ %DD12gp4 þ %DD22gp5 þ %DD26gp6;

Ap7 ¼ %DD16gp4 þ %DD26gp5 þ %DD66gp6; Ap8 ¼ kð %AA44gp7 þ %AA45gp8Þ;
Bp1 ¼ 0; Bp2 ¼ mgp1; bp3 ¼ mgp3; Bp4 ¼ 0;

Bp5 ¼ mgp2; Bp6 ¼ mð %DD16gp4 þ %DD26gp5 þ %DD66gp6Þ;
Bp7 ¼ mð %DD11gp4 þ %DD12gp5 þ %DD16gp6Þ; Bp8 ¼ mkð %AA45gp7 þ %AA55gp8Þ;
Cp1kl ¼ mgp3 þ mDTklgp7; Cp2kl ¼ mgp2 þ mDTklgp8;

Cp3kl ¼ m %DDklgp6; Cp4kl ¼ m %DDklgp7; Cp5kl ¼ m %DDklgp4;
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Cp6kl ¼ �mkð %AA44gp7 þ %AA45gp8Þ; Cp7kl ¼ �mkð %AA45gp7 þ %AA55gp8Þ;
Cp8kl ¼ 0; ½gpt� ¼ ½rtp�

�1; r11 ¼ bii; r12 ¼ mbjj ; r22 ¼ �mbij ;

r23 ¼ bii; r25 ¼ mbjj ; r31 ¼ �mbij ; r33 ¼ mbjj ; r34 ¼ bii;

r45 ¼ �mbij
%DDij; r46 ¼ %DD12bii þ m %DD16bjj; r47 ¼ %DD16bii þ m %DD11bjj ;

r54 ¼ �mbij
%DDij; r56 ¼ %DD22bii þ m %DD26bjj; r57 ¼ %DD26bii þ m %DD12bjj ;

r63 ¼ �mbij
%DDij; r66 ¼ %DD26bii þ m %DD66bjj; r67 ¼ %DD66bii þ m %DD16bjj ;

r71 ¼ �mbij
%DDij; r76 ¼ mk %AA44bij; r77 ¼ mk %AA45bij ; r78 ¼ kð %AA44bii þ m %AA45bjjÞ;

r82 ¼ �mbij
%DDij; r86 ¼ mk %AA45bij; r87 ¼ mk %AA55bij ; r88 ¼ kð %AA45bii þ m %AA55bjjÞ;

other rtp ¼ 0:

APPENDIX C

a1i0i1 ¼ a3i0i2 ¼ a4i0i3 ¼ 1; a6i0i4 ¼ a7i0i5 ¼ a8i0i6 ¼ 1;

b20jj1 ¼ b30jj2 ¼ b50jj3 ¼ 1; b60jj4 ¼ b70jj5 ¼ b80jj6 ¼ 1; b30002 ¼ 0;

apijfd ¼
X13
t¼1

Xi

k¼0

bikApt½atk0fd � atkjfdð1� dkiÞ�
(

þ
Xj

l¼0

bjlBpt½at0lfd � atilfdð1� dljÞ�

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklatklfdð1� dkidljÞ
)
;

bpijfd ¼
X13
t¼1

Xi

k¼0

bikApt½btk0gd � btkjgdð1� dkiÞ�
(

þ
Xj

l¼0

bjlBpt½bt0lgd � btilgdð1� dljÞ�

þ
Xi

k¼0

Xj

l¼0

bikbjlCptklbtklgdð1� dkidljÞ
)
;

%qqpij ¼
X13
t¼1

Xi

k¼0

bikApt½ %qqtk0 � %qqtkjð1� dkiÞ�
(

þ
Xj

l¼0

bjlBpt½ %qqt0l � %qqtilð1� dljÞ�

þ
Xi

k¼0

Xj

l¼0

bikbjlCptkl � Ap1uiqujr

)
:
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